Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6093, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480761

RESUMO

C-type cytochromes fulfil many essential roles in both aerobic and anaerobic respiration. Their characterization requires large quantities of protein which can be obtained through heterologous production. Heterologous production of c-type cytochromes in Escherichia coli is hindered since the ccmABCDEFGH genes necessary for incorporation of heme c are only expressed under anaerobic conditions. Different strategies were devised to bypass this obstacle, such as co-expressing the ccm genes from the pEC86 vector. However, co-expression methods restrict the choice of expression host and vector. Here we describe the first use of Vibrio natriegens Vmax X2 for the recombinant production of difficult-to-express redox proteins from the extreme acidophile Acidithiobacillus ferrooxidans CCM4253, including three c-type cytochromes. Co-expression of the ccm genes was not required to produce holo-c-type cytochromes in Vmax X2. E. coli T7 Express only produced holo-c-type cytochromes during co-expression of the ccm genes and was not able to produce the inner membrane cytochrome CycA. Additionally, Vmax X2 cell extracts contained higher portions of recombinant holo-proteins than T7 Express cell extracts. All redox proteins were translocated to the intended cell compartment in both hosts. In conclusion, V. natriegens represents a promising alternative for the production of c-type cytochromes and difficult-to-express redox proteins.


Assuntos
Citocromos , Escherichia coli , Vibrio , Escherichia coli/genética , Escherichia coli/metabolismo , Extratos Celulares , Oxirredução , Citocromos/metabolismo , Proteínas Recombinantes/metabolismo
2.
Appl Microbiol Biotechnol ; 106(21): 6933-6952, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36194263

RESUMO

Bioleaching of metal sulfides is performed by diverse microorganisms. The dissolution of metal sulfides occurs via two chemical pathways, either the thiosulfate or the polysulfide pathway. These are determined by the metal sulfides' mineralogy and their acid solubility. The microbial cell enables metal sulfide dissolution via oxidation of iron(II) ions and inorganic sulfur compounds. Thereby, the metal sulfide attacking agents iron(III) ions and protons are generated. Cells are active either in a planktonic state or attached to the mineral surface, forming biofilms. This review, as an update of the previous one (Vera et al., 2013a), summarizes some recent discoveries relevant to bioleaching microorganisms, contributing to a better understanding of their lifestyle. These comprise phylogeny, chemical pathways, surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, cell-cell communication, molecular biology, and biofilm lifestyle. Recent advances from genetic engineering applied to bioleaching microorganisms will allow in the future to better understand important aspects of their physiology, as well as to open new possibilities for synthetic biology applications of leaching microbial consortia. KEY POINTS: • Leaching of metal sulfides is strongly enhanced by microorganisms • Biofilm formation and extracellular polymer production influences bioleaching • Cell interactions in mixed bioleaching cultures are key for process optimization.


Assuntos
Prótons , Tiossulfatos , Compostos Férricos , Metais/metabolismo , Sulfetos/metabolismo , Ferro/metabolismo , Minerais , Enxofre/metabolismo , Polímeros , Compostos Ferrosos
3.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36251741

RESUMO

A novel thermoacidophilic archeaon, strain J1T (=DSM 112778T,=JCM 34702T), was isolated from a hot pool in a volcanic area of Java, Indonesia. Cells of the strain were irregular, motile cocci of 1.0-1.2 µm diameter. Aerobic, organoheterotrophic growth with casamino acids was observed at an optimum temperature of 70 °C in a range of 55-78 °C and at an optimum pH of 3 in a range of 1.5 to 5. Various organic compounds were utilized, including a greater variety of sugars than has been reported for growth of other species of the genus. Chemolithoautotrophic growth was observed with reduced sulphur compounds, including mineral sulphides. Ferric iron was reduced during anaerobic growth with elemental sulphur. Cellular lipids were calditoglycerocaldarchaeol and caldarchaeol with some derivates. The organism contained the respiratory quinone caldariellaquinone. On the basis of phylogenetic and chemotaxonomic comparison with its closest relatives, it was concluded that strain J1T represents a novel species, for which the name Metallosphaera javensis is proposed. Low DNA-DNA relatedness values (16S rRNA gene <98.4%, average nucleotide identity (ANI) <80.1%) distinguished J1T from other species of the genus Metallosphaera and the DNA G+C content of 47.3% is the highest among the known species of the genus.


Assuntos
Archaea , Sulfolobaceae , Archaea/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ferro , Nucleotídeos , Filogenia , Quinonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Açúcares , Sulfetos , Enxofre , Compostos de Enxofre
5.
Extremophiles ; 26(1): 2, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878614

RESUMO

The research and education mine "Reiche Zeche" in Freiberg (Saxony, Germany) represents one of the most famous mining facilities reminiscent to the century-long history of silver production in the Ore Mountains. The mine was set up at the end of the fourteenth century and became part of the "Bergakademie Freiberg" in 1919. Galena, pyrite, sphalerite, arsenopyrite, and chalcopyrite are the most common minerals found in the mine. As acid mine drainage is generated from the dissolution of sulfidic ores, the microbial habitats within the adits and galleries are characterized by low pH and high concentrations of metal(loid)s. The community composition was investigated at locations characterized by biofilm formation and iron-rich bottom pools. Amplicon libraries were sequenced on a MiSeq instrument. The taxonomic survey yielded an unexpected diversity of 25 bacterial phyla including ten genera of iron-oxidizing taxa. The community composition in the snottites and biofilms only slightly differed from the communities found in acidic bottom pools regarding the diversity of iron oxidizers, the key players in most investigated habitats. Sequences of the Candidate Phyla Radiation as, e.g., Dojkabacteria and Eremiobacterota were found in almost all samples. Archaea of the classes Thermoplasmata and Nitrososphaeria were detected in some biofilm communities.


Assuntos
Archaea , Prata , Ácidos , Archaea/genética , Bactérias/genética , Mineração
6.
Front Microbiol ; 12: 767639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745076

RESUMO

Various strategies to accelerate the formation of biofilms on minerals have been studied, and one of them is the use of D-galactose as an inducer of EPS production in planktonic cells of biooxidant bacteria. With the aim to evaluate the influence on the attachment and the effect over the solubilization of a polymetallic mineral concentrate, the behavior of a microbial consortium formed by Acidithiobacillus thiooxidans DSM 14887T and Leptospirillum ferrooxidans DSM 2705T previously induced with D-galactose for the early formation of EPS was studied. These microorganisms were previously adapted to 0.15 and 0.25% of D-galactose, respectively; afterward, different proportions of both strains were put in contact with the particle surface of a concentrate of polymetallic mineral. Also, to evaluate the affinity of each bacterium to the mineral, attachment tests were carried out with one of these species acting as a pre-colonizer. The same consortia were used to evaluate the solubilization of the polymetallic mineral. The results obtained show that the induction by D-galactose increases the microbial attachment percentage to the mineral by at least 10% with respect to the control of non-adapted consortia. On the other hand, the tests carried out with pre-colonization show that the order of inoculation also affects the microbial attachment percentage. From the different proportions tested, it was determined that the use of a consortium with a proportion of 50% of each species previously adapted to D-galactose and inoculated simultaneously, present a microbial attachment percentage to the mineral greater than 95% and better solubilization of a polymetallic mineral, reaching values of 9.7 and 11.7mgL-1 h-1 of Fe3+ and SO4 2-, respectively. Therefore, the use of D-galactose in small concentrations as inducer of EPS in acidophilic cells and the selection of an adequate strategy of inoculation can be beneficial to improve biooxidation since it would allow this process to develop in a shorter time by achieving a greater number of attached cells in a shorter time accelerating the solubilization of a sulfide mineral. Graphical AbstractEPS production using D-galactose as inducer and its influence in the attachment of consortia formed by differents proportions of A. thiooxidans and L. ferrooxidans inoculated at the same time and when one of them acting as a pre-colonizer.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34236956

RESUMO

A mixotrophic and acidophilic bacterial strain BGR 140T was isolated from mine tailings in the Harz Mountains near Goslar, Germany. Cells of BGR 140T were Gram-stain-positive, endospore-forming, motile and rod-shaped. BGR 140T grew aerobically at 25-55 °C (optimum 45 °C) and at pH 1.5-5.0 (optimum pH 3.0). The results of analysis of the 16S rRNA gene sequences indicated that BGR 140T was phylogenetically related to different members of the genus Sulfobacillus, and the sequence identities to Sulfobacillus acidophilus DSM 10332T, Sulfobacillus thermotolerans DSM 17362T, and Sulfobacillus benefaciens DSM 19468T were 94.8, 91.8 and 91.6 %, respectively. Its cell wall peptidoglycan is A1γ, composed of meso-diaminopimelic acid. The respiratory quinone is DMK-6. The major polar lipids were determined to be glycolipid, phospholipid and phosphatidylglycerol. The predominant fatty acid is 11-cycloheptanoyl-undecanoate. The genomic DNA G+C content is 58.2 mol%. On the basis of the results of phenotypic and genomic analyses, it is concluded that strain BGR 140T represents a novel species of the genus Sulfobacillus, for which the name Sulfobacillus harzensis sp. nov. is proposed because of its origin. Its type strain is BGR 140T (=DSM 109850T=JCM 39070T).


Assuntos
Clostridiales/classificação , Mineração , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Alemanha , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Curr Issues Mol Biol ; 40: 25-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32159522

RESUMO

Acidophilic microorganisms can thrive in both natural and man-made environments. Natural acidic environments comprise hydrothermal sites on land or in the deep sea, cave systems, acid sulfate soils and acidic fens, as well as naturally exposed ore deposits (gossans). Man-made acidic environments are mostly mine sites including mine waste dumps and tailings, acid mine drainage and biomining operations. The biogeochemical cycles of sulfur and iron, rather than those of carbon and nitrogen, assume centre stage in these environments. Ferrous iron and reduced sulfur compounds originating from geothermal activity or mineral weathering provide energy sources for acidophilic, chemolithotrophic iron- and sulfur-oxidizing bacteria and archaea (including species that are autotrophic, heterotrophic or mixotrophic) and, in contrast to most other types of environments, these are often numerically dominant in acidic sites. Anaerobic growth of acidophiles can occur via the reduction of ferric iron, elemental sulfur or sulfate. While the activities of acidophiles can be harmful to the environment, as in the case of acid mine drainage, they can also be used for the extraction and recovery of metals, as in the case of biomining. Considering the important roles of acidophiles in biogeochemical cycles, pollution and biotechnology, there is a strong need to understanding of their physiology, biochemistry and ecology.


Assuntos
Archaea , Bactérias , Cavernas/microbiologia , Fontes Termais/química , Fontes Termais/microbiologia , Mineração , Solo/química , Sulfatos/metabolismo , Archaea/classificação , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Nitrogênio/metabolismo , Oceanos e Mares , Oxirredução
9.
Front Microbiol ; 12: 818414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095822

RESUMO

Biochemical processes are a key element of natural cycles occurring in the environment and enabling life on earth. With regard to microbially catalyzed iron transformation, research predominantly has focused on iron oxidation in acidophiles, whereas iron reduction played a minor role. Microbial conversion of ferric to ferrous iron has however become more relevant in recent years. While there are several reviews on neutrophilic iron reducers, this article summarizes the research on extreme acidophilic iron reducers. After the first reports of dissimilatory iron reduction by acidophilic, chemolithoautotrophic Acidithiobacillus strains and heterotrophic Acidiphilium species, many other prokaryotes were shown to reduce iron as part of their metabolism. Still, little is known about the exact mechanisms of iron reduction in extreme acidophiles. Initially, hypotheses and postulations for the occurring mechanisms relied on observations of growth behavior or predictions based on the genome. By comparing genomes of well-studied neutrophilic with acidophilic iron reducers (e.g., Ferroglobus placidus and Sulfolobus spp.), it became clear that the electron transport for iron reduction proceeds differently in acidophiles. Moreover, transcriptomic investigations indicated an enzymatically-mediated process in Acidithiobacillus ferrooxidans using respiratory chain components of the iron oxidation in reverse. Depending on the strain of At. ferrooxidans, further mechanisms were postulated, e.g., indirect iron reduction by hydrogen sulfide, which may form by disproportionation of elemental sulfur. Alternative scenarios include Hip, a high potential iron-sulfur protein, and further cytochromes. Apart from the anaerobic iron reduction mechanisms, sulfur-oxidizing acidithiobacilli have been shown to mediate iron reduction at low pH (< 1.3) under aerobic conditions. This presumably non-enzymatic process may be attributed to intermediates formed during sulfur/tetrathionate and/or hydrogen oxidation and has already been successfully applied for the reductive bioleaching of laterites. The aim of this review is to provide an up-to-date overview on ferric iron reduction by acidophiles. The importance of this process in anaerobic habitats will be demonstrated as well as its potential for application.

10.
Front Microbiol ; 11: 610836, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329503

RESUMO

Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa 3 oxidase via cytochrome bc 1 complex and cytochrome c 4 or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc 1 complex and a cascade of electron transporters (cytochrome c 4, cytochrome c 552, rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.

11.
Int J Syst Evol Microbiol ; 70(5): 3348-3354, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32375942

RESUMO

A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic, metal-contaminated stream draining from an abandoned underground coal mine (Trongol mine), situated close to Curanilahue, Biobío Region, Chile. The isolate (USS-CCA1T) was demonstrated to be a heterotroph that catalysed under aerobic conditions the oxidation of ferrous iron and the reduction of ferric iron under anaerobic conditions, but not the oxidation of sulfur nor hydrogen. USS-CCA1T is a Gram-positive, motile, short rod-shaped, mesophilic bacterium with a temperature growth optimum at 30 °C (range 20-39 °C). It was categorized as an extreme acidophile growing between 1.7 and 4.5 and optimally at pH 3.0. The G+C content of the chromosomal DNA of the isolate was 74.1 mol%, which is highly related to Aciditerrimonas ferrireducens IC-180T , (the most closely related genus; 94.4 % 16S rRNA gene identity), and higher than other acidophilic actinobacteria. The isolate (USS-CCA1T) was shown to form a distinct 16S rRNA clade from characterized acidophilic actinobacteria, well separated from the genera Acidimicrobium, Ferrimicrobium, Ferrithrix, 'Acidithrix' and Aciditerrimonas. Genomic indexes (ANIb, DDH, AAI, POCP) derived from the USS-CCA1T draft genome sequence (deposited at DDBJ/ENA/GenBank under the accession WJHE00000000) support assignment of the isolate to a new species and a new genus within the Acidimicrobiaceae family. Isolate USS-CCA1T is the designated type strain of the novel species Acidiferrimicrobium australe (=DSM 106828T,=RGM 2506T).


Assuntos
Actinobacteria/classificação , Processos Heterotróficos , Ferro/metabolismo , Mineração , Filogenia , Microbiologia da Água , Ácidos , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
FEMS Microbiol Ecol ; 95(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665270

RESUMO

The geothermal Copahue-Caviahue (GCC) system (Argentina) is an extreme acidic environment, dominated by the activity of Copahue volcano. Environments characterised by low pH values, such as volcanic areas, are of particular interest for the search of acidophilic microorganisms with application in biotechnological processes. In this work, sulfate-reducing microorganisms were investigated in geothermal acidic, anaerobic zones from GCC system. Sediment samples from Agua del Limón (AL1), Las Máquinas (LMa2), Las Maquinitas (LMi) and Baño 9 (B9-2, B9-3) were found to be acidic (pH values 2.1-3.0) to moderate acidic (5.1-5.2), containing small total organic carbon values, and ferric iron precipitates. The organic electron donor added to the enrichment was completely oxidised to CO2. Bacteria related to 'Desulfobacillus acidavidus' strain CL4 were found to be dominant (67-83% of the total number of clones) in the enrichment cultures, and their presence was confirmed by their isolation on overlay plates. Other bacteria were also detected with lower abundance (6-20% of the total number of clones), with representatives of the genera Acidithiobacillus, Sulfobacillus, Alicyclobacillus and Athalassotoga/Mesoaciditoga. These enrichment and isolates found at low pH confirm the presence of anaerobic activities in the acidic sediments from the geothermal Copahue-Caviahue system.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Ácidos , Argentina , Bactérias/genética , Meio Ambiente , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
13.
Front Microbiol ; 8: 211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239375

RESUMO

Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A. cryptum. Measurements of redox potentials of iron, copper and chromium couples in acidic, sulfate-containing liquors showed that these differed from situations where metals are not complexed by inorganic ligands, and supported the current observations of indirect copper oxido-reduction and chromium reduction mediated by acidophilic bacteria. The implications of these results for both industrial applications of acidophiles and for exobiology are discussed.

14.
Res Microbiol ; 167(7): 613-23, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27154030

RESUMO

Eight strains of acidophilic bacteria, isolated from mine-impacted and geothermal sites from different parts of the world, were shown to form a distinct clade (proposed genus "Acidibacillus") within the phylum Firmicutes, well separated from the acidophilic genera Sulfobacillus and Alicyclobacillus. Two of the strains (both isolated from sites in Yellowstone National Park, USA) were moderate thermophiles that oxidised both ferrous iron and elemental sulphur, while the other six were mesophiles that also oxidised ferrous iron, but not sulphur. All eight isolates reduced ferric iron to varying degrees. The two groups shared <95% similarity of their 16S rRNA genes and were therefore considered to be distinct species: "Acidibacillus sulfuroxidans" (moderately thermophilic isolates) and "Acidibacillus ferrooxidans" (mesophilic isolates). Both species were obligate heterotrophs; none of the eight strains grew in the absence of organic carbon. "Acidibacillus" spp. were generally highly tolerant of elevated concentrations of cationic transition metals, though "A. sulfuroxidans" strains were more sensitive to some (e.g. nickel and zinc) than those of "A. ferrooxidans". Initial annotation of the genomes of two strains of "A. ferrooxidans" revealed the presence of genes (cbbL) involved in the RuBisCO pathway for CO2 assimilation and iron oxidation (rus), though with relatively low sequence identities.


Assuntos
Bacillales/classificação , Bacillales/isolamento & purificação , Microbiologia Ambiental , Minerais/metabolismo , Bacillales/genética , Bacillales/metabolismo , Carbono/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Processos Heterotróficos , Compostos Orgânicos/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/metabolismo
15.
FEMS Microbiol Lett ; 363(10)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27036143

RESUMO

Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors.


Assuntos
Meios de Cultura/química , Desulfovibrio/crescimento & desenvolvimento , Sulfatos/metabolismo , Acidiphilium/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/isolamento & purificação , Alphaproteobacteria/metabolismo , Desulfovibrio/metabolismo , Glicerol/metabolismo , Glicerol/farmacologia , Sulfeto de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Ácido Pirúvico/metabolismo , Sulfatos/farmacologia , Sulfetos/metabolismo , Sulfetos/farmacologia , Zinco/metabolismo , Zinco/farmacologia , Compostos de Zinco/metabolismo , Compostos de Zinco/farmacologia
16.
Front Microbiol ; 7: 2044, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066365

RESUMO

Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.

17.
Extremophiles ; 19(1): 39-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25370366

RESUMO

Three strains of sulfate-reducing bacteria (M1(T), D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and displayed variable motility during active growth. The pH range for growth was 3.8-7.0, with an optimum at pH 5.5. The temperature range for growth was 15-40 °C, with an optimum at 30 °C. Strains M1(T), D, and E used a wide range of electron donors and acceptors, with certain variability within the different strains. The nominated type strain (M1(T)) used ferric iron, nitrate, sulfate, elemental sulfur, and thiosulfate (but not arsenate, sulfite, or fumarate) as electron acceptors, and organic acids (formate, lactate, butyrate, fumarate, malate, and pyruvate), alcohols (glycerol, methanol, and ethanol), yeast extract, and sugars (xylose, glucose, and fructose) as electron donors. It also fermented some substrates such as pyruvate and formate. Strain M1(T) tolerated up to 50 mM ferrous iron and 10 mM aluminum, but was inhibited by 1 mM copper. On the basis of phenotypic, phylogenetic, and genetic characteristics, strains M1(T), D, and E represent a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acididurans sp. nov. is proposed. The type strain is M1(T) (=DSM 27692(T) = JCM 19471(T)). Strain M1(T) was the first acidophilic SRB isolated, and it is the third described species of acidophilic SRB besides Desulfosporosinus acidiphilus and Thermodesulfobium narugense.


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/fisiologia , Anaerobiose , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genômica , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/fisiologia , Concentração de Íons de Hidrogênio , Microscopia de Contraste de Fase , Oxigênio/química , RNA Ribossômico 16S/genética , Rios , Espanha , Sulfatos/química , Bactérias Redutoras de Enxofre/genética , Temperatura , Índias Ocidentais
18.
Environ Sci Technol ; 48(20): 12206-12, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25251612

RESUMO

Mine waters are widely regarded as environmental pollutants, but are also potential sources of valuable metals. Water draining the Maurliden mine (Sweden) is highly acidic (pH 2.3) and rich in zinc (∼ 460 mg L(-1)) and iron (∼ 400 mg L(-1)), and contains smaller concentrations (0.3-49 mg L(-1)) of other transition metals and arsenic. We have developed novel techniques that promote the concurrent amelioration of acidic waste waters and selective recovery of metals, and have used these systems to treat synthetic Maurliden mine water in the laboratory. The two major metals present were removed via controlled biomineralization: zinc as ZnS in a sulfidogenic bioreactor, and iron as schwertmannite by microbial iron oxidation and precipitation of ferric iron. A small proportion (∼ 11%) of the schwertmannite produced was used to remove arsenic as the initial step in the process, and other chalcophilic metals (copper, cadmium and cobalt) were removed (as sulfides) in the stage 1 metal sulfide precipitation reactor. Results from this work have demonstrated that modular biomineralization units can be effective at processing complex mine waters and generating metal products that may be recycled. The economic and environmental benefits of using an integrated biological approach for treating metal-rich mine waters is discussed.


Assuntos
Arsênio/isolamento & purificação , Reatores Biológicos , Ferro/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Zinco/isolamento & purificação , Ácidos , Precipitação Química , Cobre , Ferro/metabolismo , Compostos de Ferro/metabolismo , Metais , Mineração , Sulfetos/química , Sulfetos/metabolismo , Suécia , Água , Zinco/metabolismo , Compostos de Zinco/metabolismo
19.
Res Microbiol ; 165(9): 753-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25154051

RESUMO

The iron-oxidizing acidithiobacilli cluster into at least four groups, three of which (Acidithiobacillus ferrooxidans, Acidithiobacillus ferridurans and Acidithiobacillus ferrivorans) have been designated as separate species. While these have many physiological traits in common, they differ in some phenotypic characteristics including motility, and pH and temperature minima. In contrast to At. ferrooxidans and At. ferridurans, all At. ferrivorans strains analysed to date possess the iro gene (encoding an iron oxidase) and, with the exception of strain CF27, the rusB gene encoding an iso-rusticyanin whose exact function is uncertain. Strain CF27 differs from other acidithiobacilli by its marked propensity to form macroscopic biofilms in liquid media. To identify the genetic determinants responsible for the oxidation of ferrous iron and sulfur and for the formation of extracellular polymeric substances, the genome of At. ferrivorans CF27 strain was sequenced and comparative genomic studies carried out with other Acidithiobacillus spp.. Genetic disparities were detected that indicate possible differences in ferrous iron and reduced inorganic sulfur compounds oxidation pathways among iron-oxidizing acidithiobacilli. In addition, strain CF27 is the only sequenced Acidithiobacillus spp. to possess genes involved in the biosynthesis of fucose, a sugar known to confer high thickening and flocculating properties to extracellular polymeric substances.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Biofilmes/crescimento & desenvolvimento , Genoma Bacteriano , Ferro/metabolismo , Redes e Vias Metabólicas , Enxofre/metabolismo , Carboidratos/análise , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , Eucariotos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
20.
Adv Biochem Eng Biotechnol ; 141: 1-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23793914

RESUMO

Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.


Assuntos
Biotecnologia/métodos , Microbiologia Industrial/métodos , Metais Pesados/isolamento & purificação , Mineração/métodos , Archaea/metabolismo , Humanos , Resíduos Industriais , Metais Pesados/metabolismo , Consórcios Microbianos/fisiologia , Oxirredução , Bactérias Redutoras de Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...